Topological structures and the coincidence point of two mappings in cone b-metric spaces

نویسندگان

  • Congjun Zhang
  • Sai Li
  • Baoqing Liu
  • Y. H. Yao
چکیده

Let (X,d,K) be a cone b-metric space over a ordered Banach space (E, ) with respect to cone P. In this paper, we study two problems: (1) We introduce a b-metric ρc and we prove that the b-metric space induced by b-metric ρc has the same topological structures with the cone b-metric space. (2) We prove the existence of the coincidence point of two mappings T , f : X → X satisfying a new quasi-contraction of the type d(Tx, Ty) Λ{d(fx, fy),d(fx, Ty),d(fx, Tx),d(fy, Ty),d(fy, Tx)}, where Λ : E → E is a linear positive operator and the spectral radius of KΛ is less than 1. Our results are new and extend the recent results of [N. Hussain, M. H. Shah, Comput. Math. Appl., 62 (2011), 1677–1684], [M. Cvetković, V. Rakočević, Appl. Math. Comput., 237 (2014), 712–722], [Z. Kadelburg, S. Radenović, J. Nonlinear Sci. Appl., 3 (2010), 193–202]. c ©2017 All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled coincidence point in ordered cone metric spaces with examples in game theory

In this paper, we prove some coupled coincidence point theorems for mappings with the mixed monotone property and obtain the uniqueness of this coincidence point. Then we providing useful examples in Nash equilibrium.

متن کامل

Coincidence point and common fixed point results via scalarization function

The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for three self mappings in $b$-metric spaces. Next, we obtain cone $b$-metric version of these results by using a scalarization function. Our results extend and generalize several well known comparable results in the existing literature.

متن کامل

Coincidence points and common fixed points for hybrid pair of mappings in b-metric spaces endowed with a graph

In this paper, we introduce the notion of strictly (α,ψ,ξ)-G-contractive mappings in b-metric spaces endowed with a graph G. We establish a sufficient condition for existence and uniqueness of points of coincidence and common fixed points for such mappings. Our results extend and unify many existing results in the literature. Finally, we construct some examples to analyze and support our results.

متن کامل

Common fixed point results for graph preserving mappings in parametric $N_b$-metric spaces

In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of graph preserving mappings in parametric $N_b$-metric spaces. As some consequences of this study, we obtain several important results in parametric $b$-metric spaces, parametric $S$-metric spaces and parametric $A$-metric spaces. Finally, we provide some illustrative examples to ...

متن کامل

Coincident point and fixed point results for three self mappings in cone metric spaces

In this attempt we proved results on points of coincidence and common xed points for three selfmappings satisfying generalized contractive type conditions in cone metric spaces. Our results gen-eralizes some previous known results in the literature (eg. [5], [6])

متن کامل

Coupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces

 In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017